If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 3x2 + 5x + 9 = 32 Reorder the terms: 9 + 5x + 3x2 = 32 Solving 9 + 5x + 3x2 = 32 Solving for variable 'x'. Reorder the terms: 9 + -32 + 5x + 3x2 = 32 + -32 Combine like terms: 9 + -32 = -23 -23 + 5x + 3x2 = 32 + -32 Combine like terms: 32 + -32 = 0 -23 + 5x + 3x2 = 0 Begin completing the square. Divide all terms by 3 the coefficient of the squared term: Divide each side by '3'. -7.666666667 + 1.666666667x + x2 = 0 Move the constant term to the right: Add '7.666666667' to each side of the equation. -7.666666667 + 1.666666667x + 7.666666667 + x2 = 0 + 7.666666667 Reorder the terms: -7.666666667 + 7.666666667 + 1.666666667x + x2 = 0 + 7.666666667 Combine like terms: -7.666666667 + 7.666666667 = 0.000000000 0.000000000 + 1.666666667x + x2 = 0 + 7.666666667 1.666666667x + x2 = 0 + 7.666666667 Combine like terms: 0 + 7.666666667 = 7.666666667 1.666666667x + x2 = 7.666666667 The x term is 1.666666667x. Take half its coefficient (0.8333333335). Square it (0.6944444447) and add it to both sides. Add '0.6944444447' to each side of the equation. 1.666666667x + 0.6944444447 + x2 = 7.666666667 + 0.6944444447 Reorder the terms: 0.6944444447 + 1.666666667x + x2 = 7.666666667 + 0.6944444447 Combine like terms: 7.666666667 + 0.6944444447 = 8.3611111117 0.6944444447 + 1.666666667x + x2 = 8.3611111117 Factor a perfect square on the left side: (x + 0.8333333335)(x + 0.8333333335) = 8.3611111117 Calculate the square root of the right side: 2.891558596 Break this problem into two subproblems by setting (x + 0.8333333335) equal to 2.891558596 and -2.891558596.Subproblem 1
x + 0.8333333335 = 2.891558596 Simplifying x + 0.8333333335 = 2.891558596 Reorder the terms: 0.8333333335 + x = 2.891558596 Solving 0.8333333335 + x = 2.891558596 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-0.8333333335' to each side of the equation. 0.8333333335 + -0.8333333335 + x = 2.891558596 + -0.8333333335 Combine like terms: 0.8333333335 + -0.8333333335 = 0.0000000000 0.0000000000 + x = 2.891558596 + -0.8333333335 x = 2.891558596 + -0.8333333335 Combine like terms: 2.891558596 + -0.8333333335 = 2.0582252625 x = 2.0582252625 Simplifying x = 2.0582252625Subproblem 2
x + 0.8333333335 = -2.891558596 Simplifying x + 0.8333333335 = -2.891558596 Reorder the terms: 0.8333333335 + x = -2.891558596 Solving 0.8333333335 + x = -2.891558596 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-0.8333333335' to each side of the equation. 0.8333333335 + -0.8333333335 + x = -2.891558596 + -0.8333333335 Combine like terms: 0.8333333335 + -0.8333333335 = 0.0000000000 0.0000000000 + x = -2.891558596 + -0.8333333335 x = -2.891558596 + -0.8333333335 Combine like terms: -2.891558596 + -0.8333333335 = -3.7248919295 x = -3.7248919295 Simplifying x = -3.7248919295Solution
The solution to the problem is based on the solutions from the subproblems. x = {2.0582252625, -3.7248919295}
| 3x+[-x]+2=x+5 | | -10+4x=x+2 | | 28=1/4n | | -5/2x-5=-55 | | -1/2x=-7 | | 10x-1=3x+12 | | h(t)=-16t^2+177 | | 180=x+59+x+51 | | 30000x=-175000+45000x | | 1860+240=4p | | 7(-8+4k)=7k+7 | | 4y=2y+12 | | -3(4)+4y=-20 | | 7y+4=-8-17y | | 5. 4y=2y+12 | | 9x=8(x+4) | | -4=-5v+5v | | 2/3x=-3/2 | | 0=ln(140/x) | | 5(x-3)+38=2 | | 10y+20=4y+26 | | 7+5k=8k+1 | | 10=10(7x-2)+2x | | 7+5m=22 | | -10q-(1-4q)-2=5 | | x+37+x+67=180+90 | | 0.75(2x+1)=2 | | n+37=2134 | | h(t)=-16+177 | | 9(k-4)-7k=5(3k-2) | | 3n+6n= | | 7/8(x-13)= |